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This paper is the first of a pair that describe two-point velocity measurements made 
a t  various radial positions in water in fully developed pipe flow. Axial velocity 
fluctuations were measured with hot-film anemometers a t  two points sufficiently close 
together that  the turbulence structure remained essentially unchanged while passing 
between them. Phases of the cross-spectra of these velocities were then determined 
and interpreted in terms of a wave model of the turbulence structure. The model 
assigns an axial velocity and streamwise inclination to the lines of equal phase of each 
frequency component of the spectra. 

I n  general, the lines of equal phase for each frequency component are inclined to 
the wall in the flow direction, the lower frequencies being more inclined than the higher 
frequencies, though all lines of equal phase a t  points in the central region of the pipe 
tend towards the perpendicular. For points near the wall the inclinations are very 
pronounced. 

I n  the central region, phase velocities of lower frequency components are lower than 
those for higher frequencies. All phase velocities could be normalized with respect to 
position by the local mean velocity. The group velocity of small-scale (large wave- 
number) disturbances in the core region appears to be approximately constant and of 
the order of the local mean velocity. Thisleads to a modified form of Taylor’s hypothesis. 

The variance in all the measurements increases rapidly in the region y+ < 26. This 
may be due to the intermittent nature of the flow near the wall (which is discussed 
in part 2) or to a rotation of the ‘frozen’ pattern by the mean shear field between the 
two sensors. The magnitude of the latter effect is estimated in this paper and is sig- 
nificant very near the wall. The results in the central region are not affected. 

1. Introduction 
The earliest models of turbulent shear flows primarily attempted to predict mean 

flow characteristics in terms of ‘universal’ parameters. Prandtl (1926) and von 
K&rm&n (1931) developed models for calculating the mean velocity field for various 
flow conditions and geometries. These relationships did not, however, reveal any new 
information about the character of the turbulence. 
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The next step was to try to understand and predict quantities related to the tur- 
bulence structure. The major effort was devoted to determining how turbulence is 
maintained. The results of Laufer (1954) illustrated the importance of the region near 
the wall. Townsend (1956, 1958, 1961)) Grant (1958) and more recently Bakewell & 
Lumley ( 1  967) all tried to characterize the complex motions near the wall in terms of a 
few prevailing types of eddy. Grant and Townsend both demonstrated that an assumed 
structure will fit measured correlation functions. The reverse process of inferring a 
structure from a series of correlation functions is (as noted by Townsend) ambiguous 
since many different structures can give the same correlation. The space-time cor- 
relation measurements of various investigators (summarized up to 1964 by Favre 
1965) have provided considerable insight into the types of motion that exist in 
turbulent shear flows. 

The central difficulty in interpreting space-time correlations in shear flows arises 
because eddies of different sizes may move at  different speeds rather than conform to 
Taylor’s (1938) hypothesis that they move at a speed equal to the local average 
velocity. Thus spectral components of the fluctuating velocity field of different 
frequency may move past a measuring point at  different velocities. The problem of 
interpretation is made even more difficult, as pointed out by Sternberg (1967)) because 
the disturbances may be inclined to the wall, the degree of inclination being a function 
of the scale of the motion. 

Instead of trying to guess or calculate a dominant structure for near-wall turbulence, 
Kline and co-workers (Kline et al. 1967; Kim, Kline & Reynolds 1968,1971) observed 
it visually. These observations showed periods of intense, chaotic activity (called 
bursts) separated by relatively quiescent periods. Other studies of this intermittent 
behaviour are reviewed more completely in part 2 of this study. This intermittent 
behaviour is similar to the dynamic instability observed by several investigators 
(Martin & Johanson 1965; Klebanoff, Tidstrom & Sargent 1962; Kovasznay, Komoda 
& Vasuveda 1962) in the laminar-to-turbulent flow transition. The tradition of 
Fourier analysis of velocity fluctuations and the observed similarity of structure to an 
instability phenomenon led to travelling-wave representations of the turbulence 
phenomena. The experiments of Morrison (1969) also suggest that a wave representa- 
tion of turbulence may be successful. 

The wave model of Phillips (1967) proposes a mechanism by which the turbulent 
components support the Reynolds stress in turbulent shear flows. However, as 
Phillips noted, the expression obtained is probably not valid near the wall, where the 
mean vorticity gradient changes rapidly. 

Landahl (1967) proposed a model of turbulence where the mean shear flow acts 
as a waveguide for the disturbance created by the nonlinear breakdown of turbulent 
eddies. The basic idea introduced is that the turbulent fluctuations in a shear flow 
may be represented by a superposition of waves of random phase and orientation 
which are initiated by the interaction of the fluctuating velocities themselves. More 
recently Lahey & Kline (1971) haye shown how the flow-visualization work done at  
Stanford also suggests a travelling-wave representation. They demonstrated that 
several ‘permissible candidates ’ for modelling the turbulent fluctuations in terms of 
travelling waves could lead to the same correlation function. From these comparisons 
the most promising model was an oblique, non-deterministic wave model with random 
phase and amplitude. Spectra and correlations in agreement with experiments were 
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obtained by assuming that the turbulence consisted of these organized parts super- 
imposed on components having no organization. 

The preceding discussion was meant to show that a wave representation of the 
turbulent velocity field may provide insight into the processes which maintain 
turbulence. A basis for interpreting our experiments in terms of a wave representation 
is given in the next section. The experiments and results are discussed in 9 4. Experi- 
mental facilities, techniques, data processing and checks on the validity of the measure- 
ments are discussed only briefly in this paper. More detail is available in Heidrick 
(1974). 

The preceding discussion also suggests that a model based on ‘averages’ may not 
describe the turbulent processes near the wall owing to the intermittent nature 
(bursting) of the flow in that region. This intermittent nature was also investigated 
experimentally, and the results are reported in part 2 of this study. 

2. Theoretical basis for interpretation of the experiments 
The theoretical basis of a wave model for the axial velocity fluctuations u will be 

briefly reviewed here. This model assigns an axial velocity and angle of inclination to 
the wall to the lines of equal phase of each frequency component of the spectrum of u. 
The mathematical basis for this model is discussed more fully in Heidrick (1974). 

The cross-spectral density between axial velocity fluctuations at  two points 1 and 
2 consists of a real part, the cospectrum %?( f ), and an imaginary part, the quadrature 
&( f ). A measure of the correlation between each frequency component is the coherence 

where Gl( f )  and G,( f )  are the one-dimensional spectra measured at  points 1 and 2 
respectively. 

If the fluctuating signals at  points 1 and 2 were identical then R ( f )  = 1.0. If the 
signals were identical except that each spectral frequency component had a relative 
time shift Atl2( f ), then not only would the coherence be unity, but also the phase 
O12(f) = tan-’ (&(f)/%(f)) of the cross-spectrum could be related to At12(f) by 

The spectral frequency components at  1 and 2 may be thought of as propagating 
at different axial velocities C(f). The loci of equal phase of the propagating components 
may also be inclined with respect to the wall at an angle a(f), as shown in figure 1. 
The time shift caused by these components as they pass between the measuring points 
can be determined by measuring the phase of the cross-spectrum and using ( 2 ) .  
Although these waves are technically abstractions any wavelike characteristics of the 
flow should be revealed by an analysis of this type. The two measuring points must, 
however, be sufficiently close that the coherence N 1.0. For the situation shown in 
figure 1 (which defines the symbols) the phase shift is related to the disturbance 
velocity and inclination by 

provided that R( f) N 1.0 and Cl( f )  and a( f) do not change between the sensors. 



140 T .  R.  Heidrick, S.  Banerjee and R.  S.  Azad 

Mean flow - - Loci of constant phase 

FIGUBE 1. Schematic diagram of a disturbance to a 'frozen' pattern in relation to the 
sensors and the wall. C, = phase velocity, a = disturbance inclination. 
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FIGURE 2. Configurations of the two sensor probes used in the study. For configurations 

1, 2 and 3, r was 0.254mm, 0.3048mm and 0.2032mm respectively. 

Measurement of 012( f) with sensor configurations having two different values of ,8, 
such as any two of the three in figure 2, allows (3) to be solved for the two unknowns, 
C,( f) and a(f). The measurements presented in 0 4 were taken with the t h e e  orienta- 
tions shown so that a(f) and Cl(f) could be determined in three different ways and 
hence the results compared. 

Even if R( f) N 1-0 and a 'frozen pattern' may be assumed to convect past the two 
measuring points, there will still be a distribution of phase velocities associated with 
each frequency component. An average phase velocity can be calculated by the 
technique discussed but no information about the distribution of phase velocities 
about the mean can be obtained. This may not be a serious drawback however, since 
Morrison ( 1969) has shown that the distribution of phasevelocities is quite concentrated 
about the mean. 
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FIGURE 3. Schematic diagram of the experimental apparatus. 

3. Experimental equipment and test facility 
Experimental loop 

The experiments were performed in water (v = 1.022 cS) in a 7.87 cm1.D. round tube 
that was honed and polished on the inside and inserted into the arrangement shown 
schematically in figure 3. 

The water in the facility was maintained isothermal to within & 0.05 "C by adjusting 
the cooling rate of the heat exchanger. The head tank was vented to the atmosphere. 
The test section was a 6.096 m length of nominally 7.79 cm I.D. stainless-steel pipe 
to which 1.22 m of honed and polished cast aluminium tube was butt-connected. The 
tubes were of the same diameter to within 0.07 11 mm and there was no surface dis- 
continuity a t  the connexion. The ratio of the length between the entrance and the 
measuring point to the inside tube diameter was 92.6. Mean velocities were measured 
at  various positions and found to be symmetric. I n  the log region, they were best 
represented by Clauser's (1956) equation 

(4) 

where y is the distance from the wall, U* is the friction velocity and v is the kinematic 
viscosity of the fluid. 

o/u* = 4.9 + 5.6 log (yu*/v), 
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Velocity sensors 

Velocities were measured with hot-film probes consisting of two sensors (0.0508 mm 
diameter x 1-87 mm long, 1 mm heated length) placed about 0.25 mm apart in the 
orientations shown in figure 2. Sensor separations were measured using an optical 
camparitor and were 0.254, 0.3048 and 0.2032mm for configurations 1, 2 and 3 
respectively. The sensors were separated by about 2-5 Kolmogorov microscales (if 
the dissipation is estimated from the mean flow variables as in Bakewell & Lumley 
1967) for the experiments discussed here. Thus the separation between the two sensors 
was of the order of the smallest length scales of significance. 

An extensive series of experiments was performed to check the effect of one sensor 
on the other. These experiments were performed in turbulent jets and in turbulent 
flow through pipes. For example, energy spectral densities, turbulence intensities and 
amplitude distributions were measured with each sensor. Some of these data are 
reported in Heidrick, Azad & Banerjee (1972). The spacing between sensors and the 
orientations were varied. For the range of conditions discussed in this paper, no 
interference was found between sensors, except for some measurements with the 
p = 135" probe. 

The frequency response of the sensors was measured (by the square-wave test) 
and matched. The response was checked by making the velocities high enough to 
cause eddy shedding. The vortex shedding frequency was the same for both sensors 
and in agreement with Roshko (1953). 

Anemometers, signal conditioning and data acquisition 

The hot-film sensors were calibrated in the measuring section with a Pitotstatic 
tube and the signals were then linearized. A d.c. voltage estimated to be near the mean 
was subtracted from the signals, which were then low-pass filtered and amplified 
before being recorded on an analog tape recorder, The electronic and recording circuits 
for each channel were identical, but their characteristics were checked using sine-wave 
inputs and a differential phase meter. 

Digital data acquisition 
The two channels of analog data were digitized simultaneously at  either 1000 or 2000 
samples/s. Either 1 or 2 minrecord lengths were accumulated. These digitized data were 
then processed using the fast Fourier transform algorithm of Cooley & Tukey (1965). 

4. Results 
Phase velocities and angles of inclination 

The phases q512( f) of the cross-spectra were measured at various radial positions in 
the pipe with sensors in the three orientations shown in figure 2. The time delays 

associated with each phase shift were then calculated. A typical example, obtained 
when the Reynolds number Re, (based on the pipe radius and centre-line velocity) 
was 15600, is shown in figure 4. 

A M f )  = 4 2 ( f  )Pnf (5) 
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The phases of the cross-spectra (and hence the time delays) are subject to random 
error since they are estimated from finite record lengths. I f  the signals are Gaussian 
then the probability p that the true phase lies in the interval 012( f) A&( f) is given 
by Stegen & Van Atta (1970) as 

(6) 
1-Rz 

R2 
sin2AOlz = - [(l -p)-Z’O- 13, 

where D is the number of degrees of freedom in the estimate and is twice the number 
of realizations for the ‘fast Fourier transform ’ algorithm. Rz should be the true squared 
coherence but is replaced by the measured squared coherence to obtain an estimate 
of AO,,. The coherence is relatively constant at  1ow.frequencies and the phase decreases 
towards Olz(f) = 0. Hence there is a frequency below which Olz( f) and AOlz( f) are of 
comparable magnitude. This frequency is a lower bound on the range of frequencies 
where one can have confidence in the measurements of Olz( f) or Atlz( f ). The number 
of degrees of freedom used for all the low frequency results was 126. For R2 = 0.90 
this yields 95 yo confidence limits on the measured phase of 4.2”. At 10 Hz this 4.2’ 
corresponds to a time shift of 5.56 ms. 
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Results for Re, = 15600 

Since the data from each probe configuration were not taken a t  identical radial 
positions in the pipe, it was necessary to interpolate between the results to obtain 
values of C,(f) and a(f) from (3).  For this purpose each set of data was least-squares 
fitted by a polynomial. For example, the lines shown in figure 4 are fits to the data 
shown. Figure 5 summarizes the time delays measured when Re, = 15600. Also 
indicated on these curves are several values of the square of the coherence (R2) as this 
is a measure of the variability in the phase data. The coherence is generally higher a t  
points closest to the centre of the pipe, though the coherence measured with the 
/3 = 135" probe appears to be lower at  the centre of the pipe. However, this exception 
is probably due to the decreasing signal/noise ratio measured with this probe 8s it 
was traversed towards the centre of the pipe since an increased noise level will cause 
a decrease in the measured coherence. 
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Time delays were taken from figure 5 ,  interpolated to identical radial positions 
(values of y) and then converted to the phase velocities and angles of inclination 
defined by (2). Figures 6 and 7 show the phase velocities calculated in this manner 
using various probe combinations. If the time-delay measurements were perfect, then 
the values of C,( f) calculated with each combination (pair of configurations) would be 
identical. However, it is apparent that the results do not totally agree. Agreement 
between the results calculated from different sensor pairs is fairly good for y/R > 0.06. 
However, the agreement closer to the wall (where the general coherence level is lower) 
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is not good. If flow near the wall is made up of intermittent intervals of quasi-periodic 
behaviour interspersed with background turbulence then the present wave model 
based on 'averages' might be expected to break down near the wall. 

As previously noted, the model also relies on C,(f) and a(f) being constant between 
the sensors. Near the wall, each frequency component (depicted in figure 1)  may 
undergo a significant amount of rotation owing to the steep velocity gradient. Hence 
the assumption of a constant a(f) becomes less useful near the wall: a rotational 
component has to be added to the model. This effect is discussed in the appendix, 
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FIGURE 8 .  Summary of phase velocities in turbulent pipe flow at Re, = 15600. x 
-, 

ylR = 0.251; A ,  Y/R = 0.501; V, YIR = 0.75; 

where it is shown that the applicability of the simple model is affected. The effect is, 
however, small for positions in the central region of the pipe. 

Since each measurement of the time delay is subject to some error, a 'best estimate ' 
of C,(f) and a(f) can be chosen to minimize the total error in the measured time 
delays. The data were processed with a computer program (Shih 1968) to select the 
values of C,(f) and a( f )  that minimized the least-square deviation of the measured 
time delays from the best values for the time delays. These results are also indicated 
in figures 6 and 7. The difference in results obtained with the various sensor combina- 
tions is indicated by the standard error bars shown on alternate data points. 

The 'best estimates ' of C,( f )  at various central positions are summarized in figure 8 
as a function of frequency. For clarity, the error bars have not been included but are 
shown in the previous figures. 

Two general conclusions are evident from figure 8. 
(i) The lower frequency components propagate more slowly than those of higher 

frequency . 
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(ii) As the centre of the pipe is approached, the phase velocities increase in a manner 
similar to the mean velocity. 

In  figure 9, C,(f) normalized by the local mean velocity is plotted against frequency 
for various positions in the pipe. The scatter appears to be reduced at  the lower 
frequencies. The second conclusion is again supported. 

The best estimates of the angles of inclination (a(!) in figure 2) of the loci of equal 
phase for the frequency components are plotted against frequency in figure 10 for 
various radial positions. The conclusions regarding the loci of equal phase for the 
frequency components are as follows. 

(i)  They make smaller angles with the wall (are more sharply inclined) for positions 
closer to the wall. 

(ii) They are more sharply inclined for the lower frequencies than for the higher 
frequencies. 

(iii) For the higher frequencies they are perpendicular to the wall near the centre 
of the pipe. 

(iv) They tend to reach the same inclinations a t  all radial positions for the lower 
frequencies. 
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FIGURE 10. Angles of inclination (normalized by in) of the frequency components of u in 

the core region of fully developed pipe flow at Re, = 15600. Symbols as figure 8. 

The last conclusion is explainable in physical terms because large-scale structures 
might extend across all or most of the positions shown and have a dominant angle of 
inclination. This would explain why the lower frequency components tend to be 
equally inclined to the wall irrespective of distance from the wall. In figure 8, a similar 
but less discernible trend is evident a t  low frequencies for Cl( f ); at the low frequencies 
the phase velocities tend to the same value for all distances from the wall. 

Phase-velocity/frequency data have been replotted in terms of the radial frequency 
w and radial wavenumber k = ulCl in figure 11. This plot permits the determination 
of a 'group velocity'. It is difficult (Brillouin 1960, p. 97) to define a 'group velocity' 
physically except in simple circumstances, though it is simple to define mathematically. 
The definition arises from considering two waves A cos (wl t - k, z) and A cos (w,  t - k, z), 
which are superimposed to give 

li/ = A cos ( ~ 1  t - k, X) + A  cos (w2 t - k, x). 

If the waves have quite similar characteristics, i.e. 

w , = w + A w ,  k l = k + A k ,  w 2 = w - h w ,  k 2 =  k - A k ,  

then ( 5 )  becomes $ = 2A cos ( A d  - Ak)  cos (wt - k ) .  (7 1 
This is a carrier with frequency w1 and a modulation with frequency Aw. Thus the 
wave may be described as a series of moving beats (or groups or wave packets). The 
phase velocity is the velocity of the carrier, i.e. 

C = w/k.  (8) 

U, = Aw/Ak + a@k as Ak -+ 0. (9) 

The group velocity is the velocity of the wave packets, i.e. 

Physically, U, is the velocity of the wave packets formed by the superposition of 
the individual waves. When the data are plotted as in figure 11 then the phase velocity 
C,(o) is given by the slope of the straight line joining the origin to the point on the 
curve at the frequency w [from (S)]. The group velocity a t  w is the slope of the tangent 
to the curve at w [from (9)]. 
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I I I I I 

At the higher wavenumbers in figure 11 the group velocity is constant and equal 
to the local mean velocity at  positions with y1R = 0.1023 and 0.25. The scatter in the 
data becomes larger as the centre of the pipe is approached, and it is difficult to 
determine whether the group velocity is equal to the local mean velocity 0. However 
the slopes of the curves do increase (as they would if 0 = U,) and it appears certain 
that the group velocity is near the mean velocity for k > 12 cm-l at positions in the 
core region of the pipe. The slopes of the best straight-line fits to this region of k for 
yIR > 0.5 are actually somewhat less than 0 for each case, but no firm conclusions 
can be drawn because of the scatter. 

For situations where w and k are linearly related, as for the higher wavenumbers 
in figure 11, it can be shown (Brillouin 1960, p. 10) that the modulations or groups 
propagate without distortion. Thus, since the kth wavenumber component of u is the 
recombination of several wavenumber components (i.e. the 'group ') this actually 
implies a modified frozen-pattern hypothesis; that is, the smaller scales (k > 12 cm-l) 
in the central region (y/R > 0.1) of fully developed pipe flow convect in a frozen 
pattern at  a group velocity close to the local mean velocity. 

A data analysis similar to that discussed in the previous section was performed for 
a more restricted range of radial positions for measurements made at  Reynolds numbers 
of 33 000 and 63 900 (for details see Heidrick 1974). The general behaviour of all the 
quantities discussed above was similar, with a few exceptions for the highest Reynolds 
number. For this case the time delays measured were very small since the flow velocity 
was high. The phase velocities and inclinations showed reasonable agreement with the 
other measurements at  high frequencies, but rather high phase velocities were found 
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at low frequencies. This inconsistency was probably due to the very small time delays 
which had to be measured. 

Also, a lower fraction of the total turbulence kinetic energy is held in the low 
frequency components for two highest Reynolds numbers. This results in a decreased 
signallnoise level at low frequencies comparedwith the tests a t  lower Reynoldsnumbers . 

I n  the w vs. k plot (similar to figure 11)  for the tests with Re, = 63900, a maximum 
wavenumber appeared to be attained for each position. A cut-off of this sort is physic- 
ally necessary because there will be a finite lower limit to the size of the eddies in the 
turbulent flow. The physical dimension corresponding to the cut-off wavenumber 
ranges from 0.0024 to 0.0036 cm. 

5. Summary and conclusions 
I n  the central region of the pipe, yf > 30, the spectral frequency components behave 

similarly a t  all the Reynolds numbers investigated, except for some inconsistencies 
for the highest Reynolds number. 

I n  general, the phase velocities of the components are less than the local mean 
velocity in the central region. The lower frequency components propagate more 
slowly than those of higher frequency. Phase velocities at all frequencies increase with 
distance from the wall, however the lowest frequency components tend to propagate 
at the same velocity throughout the central region. 

The loci of equal phase for the frequency components are more sharply inclined in 
the flow direction (i.e. a( f) decreases) as the wall is approached. The lower frequencies 
are more inclined than the higher, which become perpendicular near the centre of the 
pipe. I n  the central region, inclinations a t  the lowest frequencies tend towards the 
same value. The group velocities a t  the smaller scales (higher wavenumbers), calculated 
from the phase velocities, were near the local mean velocity in the central region. 
This suggests a modified form of Taylor's hypothesis. 

Difficulties were encountered in interpreting the results for the near-wall region 
(y+  < 30) in this way. This may be due to either rotational effects of the mean shear 
field or the intermittent nature of the flow near the wall. Recent visual studies (Kim 
et al. 1971; Kline et al. 1967) have shown that the near-wall region consists of two 
distinct types of motion: (a )  a quasi-periodic motion and ( b )  a more random type of 
background turbulence. Hence the statistical behaviour of u(t)  during motion of type 
(a) may be completely different from that during motion of type ( b ) .  Thus a quantity 
averaged over both types of interval may be inadequate. Further work has been 
undertaken to provide insight into how the intermittent intervals of quasi-periodic 
activity in the wall region affect the structure of the flow near the wall. 

Appendix. The effects of rotation on the decomposition of the measured wave 
An estimate of the effects of rotation may be obtained by considering figure 12. 

As the frequency component passes from sensor 1 to sensor 2 it rotates owing to a 
relative velocity between the top and bottom. The equation relating the measured 
phase shift, phase velocity and inclination [analogous to (3)] is 

27rfr 
(sinp cot a' - cosp). 

e12(f) = Cl( f )  + Au 
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FIGURE 12. Schematic diagram of a locus of constant phase translating 
and rotating as it passes between two sensors. 

If this relative velocity is caused by the mean velocity gradient then 

Au = +rsin$6U/6y 

and thus 

An expression may be written down for each sensor of figure 2 by substituting the 
appropriate dimensions : 

The units for Cl(f) and U in these expressions are m/s. A superscript denotes the 
configuration number from figure 2. These expressions could also be written in terms 
of the inclination a instead of a' by substituting 

1 6U 
cota' = cota+-- 

W n f  1 SY - 
To solve any pair of these equations (or the equivalent pair using a) we have to 

assume either that a or that a' is the same for each pair of probes. However, it can 
be shown that using either assumption results in the same final expression for C,(f). 

Solving (A 2) and (A 3) yields the following expression for C,(f): 

The first term is identical with the solution of (2) for these sensors, and the second 
term is the correction to C,( f )  for rotational effects. Denoting the above type of solution 
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as Ci&(f) and the solution to (2) as Citrot(f) (where the superscript denotes the pair 
of 3ensors), each pair out of (A 2)-(A 4) may be solved, yielding 

These expressions may now be used to investigate the order of magnitude of the 
effects of rotation. For example, a t  y+ N 26, where f?:,(f) = '0, the rotational corrections 
to Cno rot( f )  that are calculated from (A 7)  and (A 8) are independent of frequency and 
easily estimated. At y+ - 26, (A7) becomes 

C::,(f) = rot(f) - 4.6 x m/s 

and (A 8)  becomes C::t(f) = Cit rot(f) - 2.2 x 10-3 m/s. 

The order of magnitude of t'he correction to rot(f), C;: rot(f) or Ckt rot(f) is thus 
not large enough to explain the increasing scatter visible in the data shown in figure 7 

At yf > 26 the magnitudes of the corrections to each phase-velocity equation can 
be shown to be about equal by substituting several typical values into (A 6)-(A 8). 
Hence the validity of least-squares fitting the data to obtain the best estimate of 
C,( f )  is not affected by a rotational correction in this region of the flow. 

For positions closer to the wall than y+ N 26, (A5) and (A7) reveal that both 
Cktrot and the correction to it for rotation are extremely sensitive to the measured 
values of O:,(f). This is mainly due to the fact that O : , ( f )  is positive for yf < 26 and 
hence rot( f )  and the rotational correction are proportional to the difference between 
the measured values of Si,(f) and 8&(f). The value of C:;t(f) is least sensitive to both 
the measured value and the rotational correction. Thus this quantity, rather than 
the least-squares fit to the data, may be the best estimate of C,( f )  for y+ < 26. 

a t  y+ N 26. 
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